Received 19 September 2005 Accepted 10 October 2005

Online 15 October 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Long-Guan Zhu^a* and Hong-Ping Xiao^b

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bSchool of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.010 \text{ Å}$ R factor = 0.032 wR factor = 0.078 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[aqua(2,2'-bipyridine)(μ_3 -3-sulfonatobenzoato)lead(II)]

In the title polymeric complex, $[Pb(C_7H_4O_5S)(C_{10}H_8N_2)-(H_2O)]_n$, each Pb^{II} atom has a seven-coordinate geometry. The 3-sulfonatobenzoate ligand acts as a μ_3 -bridging linker, generating a one-dimensional ladder. The packing is further stabilized by an $O-H\cdots O$ hydrogen-bonding network.

Comment

Benzenedicarboxylate metal complexes exhibit interesting and diverse topologies (Xiao & Zhu, 2003; Zhu *et al.*, 2004). In order to compare the coordination modes of sulfonate and carboxylate groups, we have recently reported several 4-sulfonatobenzoate (Fan, Xiao, Zhang, Cai & Zhu, 2004; Fan, Xiao, Zhang & Zhu, 2004; Zhang & Zhu, 2005*a,b,c*) and 2-sulfonatobenzoate metal complexes (Xiao, 2005; Xiao, Li & Hu, 2005; Xiao, Shi & Cheng, 2005). As expected, both ligands led to a variety of interesting architectures. We have now synthesized the title 3-sulfonatobenzoate lead(II) complex, (I), and the results are presented here.

In (I), the Pb^{II} atom adopts a seven-coordinate geometry, involving two N donors from one 2,2'-bipyridine ligand, four O atoms [two from a carboxylate group and two from two sulfonyl groups of three different 3-sulfonatobenzoate (3-sb) ligands] and one O atom from the water molecule (Fig. 1 and Table 1). Pb^{II} coordination geometry is largely affected by the stereochemical activity of valence-shell electron lone pairs (Shimoni-Livny et al., 1998). In our recent work on Pb complexes, we have used a bond-length limit of 3.10 Å (Soudi et al., 2005) to define a reasonable coordination sphere around the Pb^{II} atom. Therefore, in the title compound we have accepted the seven-coordinate geometry for the Pb^{II} atom, even though the Pb1–O3 bond, at 2.966 (5) Å, is significantly longer than the other six Pb–O bonds. The carboxylate group of the 3-sb ligand chelates a Pb^{II} atom, while the sulfonate group links two Pb^{II} atoms in a skew-skew bridging mode,

Printed in Great Britain – all rights reserved

© 2005 International Union of Crystallography

Figure 1

A view of a segment of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes (i): 2 - x, -y, 1 - z; (ii): 2 - x, 1 - y, 1 - z.]

Figure 2

A view of the ladder-like chain of (I). H atoms have been omitted for clarity. The symmetry codes are as in Fig. 1.

with a Pb \cdots Pb separation of 5.2414 (4) Å. Thus, the bridging 3-sb ligands generate a ladder-like chain (Fig. 2). The packing is further stabilized by an extensive network of O-H···O hydrogen bonds (Table 2), which links the chains into twodimensional layers (Fig. 3).

Experimental

A mixture of Pb(NO₃)₂ (0.126 g, 0.38 mmol), sodium hydrogen 3-sulfonatobenzoate (0.063 g, 0.28 mmol), 2,2'-bipyridine (0.053 g, 0.34 mmol) and water (10 ml) was heated at 423 K for 51 h in a 20 ml Teflon-lined stainless steel autoclave. After cooling to room temperature, the mixture was filtered and the resulting solution was put aside. Pale-yellow block-shaped crystals of (I) were obtained after 10 d.

Crystal data

$[Pb(C_7H_4O_5S)(C_{10}H_8N_2)(H_2O)]$	Z = 2
$M_r = 581.55$	$D_x = 2.205 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.0098 (4) Å	Cell parameters from 3723
b = 11.2360 (7) Å	reflections
c = 11.6818 (7) Å	$\theta = 2.8 - 28.0^{\circ}$
$\alpha = 98.227 \ (1)^{\circ}$	$\mu = 9.79 \text{ mm}^{-1}$
$\beta = 98.147 \ (1)^{\circ}$	T = 295 (2) K
$\gamma = 102.232 (1)^{\circ}$	Block, pale yellow
V = 875.75 (9) Å ³	$0.18 \times 0.15 \times 0.07 \text{ mm}$

Figure 3

F

A view of the packing of (I), showing the hydrogen bonds (dashed lines) linking the ladder-like chains in two dimensions. The symmetry codes are as in Fig. 1.

Data collection

Bruker APEX area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.185, T_{\max} = 0.508$
4803 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.078$ S=1.053210 reflections 250 parameters

3210 independent reflections 3069 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.019$ $\theta_{\rm max} = 25.5^{\circ}$ $h = -8 \rightarrow 8$ $k = -13 \rightarrow 13$ $l = -14 \rightarrow 13$

H-atoms treated by a mixture of independent and constrained refinenemt $w = 1/[\sigma^2(F_o^2) + (0.0524P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 2.08 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.55 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Pb1-O1 ⁱ	2.607 (4)	Pb1-N2	2.515 (5)
Pb1-O2 ⁱ	2.543 (4)	S1-O3	1.459 (5)
Pb1-O3	2.966 (5)	S1-O4	1.440 (5)
Pb1-O5 ⁱⁱ	2.689 (4)	S1-O5	1.451 (5)
Pb1-O6	2.680 (5)	O1-C1	1.260 (7)
Pb1-N1	2.511 (5)	O2-C1	1.250 (8)
$O2^i - Pb1 - O1^i$	50.53 (14)	O5 ⁱⁱ -Pb1-O3	94.41 (14)
O1 ⁱ -Pb1-O3	76.52 (15)	O6-Pb1-O3	117.93 (15)
O1 ⁱ -Pb1-O5 ⁱⁱ	143.95 (15)	N1-Pb1-O3	158.46 (15)
O1 ⁱ -Pb1-O6	136.36 (17)	N2-Pb1-O3	94.25 (15)
N1-Pb1-O1 ⁱ	98.92 (16)	O6-Pb1-O5 ⁱⁱ	78.85 (17)
N2-Pb1-O1 ⁱ	74.58 (16)	N1-Pb1-O5 ⁱⁱ	76.79 (15)
O2 ⁱ -Pb1-O3	113.63 (14)	N2-Pb1-O5 ⁱⁱ	71.37 (15)
O2 ⁱ -Pb1-O5 ⁱⁱ	151.96 (15)	N1-Pb1-O6	80.07 (16)
$O2^i - Pb1 - O6$	87.76 (16)	N2-Pb1-O6	137.58 (18)
N1-Pb1-O2 ⁱ	76.70 (15)	N1 - Pb1 - N2	64.39 (16)
N2-Pb1-O2 ⁱ	104.73 (16)		

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O6 - H6A \cdots O4^{iii} \\ O6 - H6B \cdots O1^{iv} \end{array}$	0.85 (5)	2.21 (4)	2.982 (8)	151 (6)
	0.85 (5)	1.91 (5)	2.756 (7)	175 (7)

Symmetry codes: (iii) x - 1, y, z; (iv) -x + 1, -y, -z + 1.

All aromatic H atoms were placed in calculated positions, with C-H = 0.93 Å, and refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms molecule were located in a difference Fourier map and refined with a distance restraint of O–H = 0.85 (1) Å and a fixed isotropic displacement parameter of $U_{\rm iso}({\rm H}) = 0.05$ Å². The highest peak and deepest hole in the final difference Fourier map are 0.93 Å and 1.10 Å from atom Pb1, respectively.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (grant No. 50073019).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.

- Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. & Zhu, L.-G. (2004). Acta Cryst. E60, m1970–m1972.
- Fan, S.-R., Xiao, H.-P., Zhang, L.-P. & Zhu L.-G. (2004). Acta Cryst. E60, m1833–m1835.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853– 1867.
- Soudi, A. A., Marandi, F., Morsali, A. & Zhu, L.-G. (2005). Inorg. Chem. Commun. 8, 773–776.
- Xiao, H.-P. (2005). Acta Cryst. E61, m942-m944.
- Xiao, H.-P., Li, X.-H. & Hu, M.-L. (2005). Acta Cryst. E61, m506-m508.
- Xiao, H.-P., Shi, Q. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m907-m909.
- Xiao, H.-P. & Zhu, L.-G. (2003). Chin. J. Inorg. Chem. 19, 1179-1184.
- Zhang, L.-P. & Zhu, L.-G. (2005a). Acta Cryst. E61, m1036-m1038.
- Zhang, L.-P. & Zhu, L.-G. (2005b). Acta Cryst. E61, m1439-m1440.
- Zhang, L.-P. & Zhu, L.-G. (2005c). Acta Cryst. E61, m1768-m1770.
- Zhu, L.-G., Xiao, H.-P. & Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 94–96.