Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Long-Guan Zhu ${ }^{\text {a* }}$ and Hong-Ping

 Xiao ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.032$
$w R$ factor $=0.078$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[aqua(2,2'-bipyridine)(μ_{3}-3-sulfonatobenzoato)lead(II)]

In the title polymeric complex, $\left[\mathrm{Pb}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, each $\mathrm{Pb}^{\mathrm{II}}$ atom has a seven-coordinate geometry. The 3-sulfonatobenzoate ligand acts as a μ_{3}-bridging linker, generating a one-dimensional ladder. The packing is further stabilized by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network.

Comment

Benzenedicarboxylate metal complexes exhibit interesting and diverse topologies (Xiao \& Zhu, 2003; Zhu et al., 2004). In order to compare the coordination modes of sulfonate and carboxylate groups, we have recently reported several 4-sulfonatobenzoate (Fan, Xiao, Zhang, Cai \& Zhu, 2004; Fan, Xiao, Zhang \& Zhu, 2004; Zhang \& Zhu, 2005a,b,c) and 2-sulfonatobenzoate metal complexes (Xiao, 2005; Xiao, Li \& Hu, 2005; Xiao, Shi \& Cheng, 2005). As expected, both ligands led to a variety of interesting architectures. We have now synthesized the title 3 -sulfonatobenzoate lead(II) complex, (I), and the results are presented here.

(I)

In (I), the $\mathrm{Pb}^{\mathrm{II}}$ atom adopts a seven-coordinate geometry, involving two N donors from one $2,2^{\prime}$-bipyridine ligand, four O atoms [two from a carboxylate group and two from two sulfonyl groups of three different 3 -sulfonatobenzoate (3-sb) ligands] and one O atom from the water molecule (Fig. 1 and Table 1). $\mathrm{Pb}^{\mathrm{II}}$ coordination geometry is largely affected by the stereochemical activity of valence-shell electron lone pairs (Shimoni-Livny et al., 1998). In our recent work on Pb complexes, we have used a bond-length limit of $3.10 \AA$ (Soudi et al., 2005) to define a reasonable coordination sphere around the $\mathrm{Pb}^{\text {II }}$ atom. Therefore, in the title compound we have accepted the seven-coordinate geometry for the $\mathrm{Pb}^{\mathrm{II}}$ atom, even though the $\mathrm{Pb} 1-\mathrm{O} 3$ bond, at 2.966 (5) \AA, is significantly longer than the other six $\mathrm{Pb}-\mathrm{O}$ bonds. The carboxylate group of the 3 -sb ligand chelates a $\mathrm{Pb}^{\mathrm{II}}$ atom, while the sulfonate group links two $\mathrm{Pb}^{\text {II }}$ atoms in a skew-skew bridging mode,

Received 19 September 2005 Accepted 10 October 2005 Online 15 October 2005

Figure 1
A view of a segment of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes (i): $2-x,-y, 1-z$; (ii): $2-x, 1-y$, $1-z$.]

Figure 2
A view of the ladder-like chain of (I). H atoms have been omitted for clarity. The symmetry codes are as in Fig. 1.
with a $\mathrm{Pb} \cdots \mathrm{Pb}$ separation of 5.2414 (4) \AA. Thus, the bridging 3-sb ligands generate a ladder-like chain (Fig. 2). The packing is further stabilized by an extensive network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), which links the chains into twodimensional layers (Fig. 3).

Experimental

A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.126 \mathrm{~g}, 0.38 \mathrm{mmol})$, sodium hydrogen 3-sulfonatobenzoate $(0.063 \mathrm{~g}, 0.28 \mathrm{mmol}), 2,2^{\prime}$-bipyridine $(0.053 \mathrm{~g}$, $0.34 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was heated at 423 K for 51 h in a 20 ml Teflon-lined stainless steel autoclave. After cooling to room temperature, the mixture was filtered and the resulting solution was put aside. Pale-yellow block-shaped crystals of (I) were obtained after 10 d .

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	$Z=2$
$M_{r}=581.55$	$D_{x}=2.205 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.0098(4) \AA$	Cell parameters from 3723
$b=11.2360(7) \AA$	reflections
$c=11.6818(7) \AA$	$\theta=2.8-28.0^{\circ}$
$\alpha=98.227(1)^{\circ}$	$\mu=9.79 \mathrm{~mm}^{-1}$
$\beta=98.147(1)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=102.232(1)^{\circ}$	Block, pale yellow
$V=875.75(9) \AA^{\circ}$	$0.18 \times 0.15 \times 0.07 \mathrm{~mm}$

Figure 3
A view of the packing of (I), showing the hydrogen bonds (dashed lines) linking the ladder-like chains in two dimensions. The symmetry codes are as in Fig. 1.

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.185, T_{\text {max }}=0.508$
4803 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.078$
$S=1.05$
3210 reflections
250 parameters

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.607(4)$	$\mathrm{Pb} 1-\mathrm{N} 2$	$2.515(5)$
$\mathrm{Pb} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.543(4)$	$\mathrm{S} 1-\mathrm{O} 3$	$1.459(5)$
$\mathrm{Pb} 1-\mathrm{O} 3$	$2.966(5)$	$\mathrm{S} 1-\mathrm{O} 4$	$1.440(5)$
$\mathrm{Pb} 1-\mathrm{O} 5^{\mathrm{ii}}$	$2.689(4)$	$\mathrm{S} 1-\mathrm{O} 5$	$1.451(5)$
$\mathrm{Pb} 1-\mathrm{O} 6$	$2.680(5)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.260(7)$
$\mathrm{Pb} 1-\mathrm{N} 1$	$2.511(5)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.250(8)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	$50.53(14)$	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Pb} 1-\mathrm{O} 3$	$94.41(14)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 3$	$76.52(15)$	$\mathrm{O} 6-\mathrm{Pb} 1-\mathrm{O} 3$	$117.93(15)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 5^{\mathrm{ii}}$	$143.95(15)$	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 3$	$158.46(15)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 6$	$136.36(17)$	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 3$	$94.25(15)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	$98.92(16)$	$\mathrm{O} 6-\mathrm{Pb} 1-\mathrm{O} 5^{\mathrm{ii}}$	$78.85(17)$
$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	$74.58(16)$	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 5^{\mathrm{ii}}$	$76.79(15)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 3$	$113.63(14)$	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 5^{\mathrm{ii}}$	$71.37(15)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 5^{\mathrm{ii}}$	$151.96(15)$	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 6$	$80.07(16)$
$\mathrm{O} 2^{i}-\mathrm{Pb} 1-\mathrm{O} 6$	$87.76(16)$	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 6$	$137.58(18)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 2^{\mathrm{i}}$	$76.70(15)$	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$64.39(16)$
$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 2^{\mathrm{i}}$	$104.73(16)$		

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $-x+2,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6A $\cdots{ }^{\text {O }} 4^{\text {iii }}$	$0.85(5)$	$2.21(4)$	$2.982(8)$	$151(6)$
O6-H6 $^{\text {iv }} \cdots$ O $^{\text {iv }}$	$0.85(5)$	$1.91(5)$	$2.756(7)$	$175(7)$

Symmetry codes: (iii) $x-1, y, z$; (iv) $-x+1,-y,-z+1$.

All aromatic H atoms were placed in calculated positions, with $\mathrm{C}-$ $\mathrm{H}=0.93 \AA$, and refined as riding atoms, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. Water H atoms molecule were located in a difference Fourier map
and refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and a fixed isotropic displacement parameter of $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$. The highest peak and deepest hole in the final difference Fourier map are $0.93 \AA$ and $1.10 \AA$ from atom Pb 1 , respectively.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (grant No. 50073019).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.

Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1970-m1972.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P. \& Zhu L.-G. (2004). Acta Cryst. E60, m1833-m1835.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shimoni-Livny, L., Glusker, J. P. \& Bock, C. W. (1998). Inorg. Chem. 37, 18531867.

Soudi, A. A., Marandi, F., Morsali, A. \& Zhu, L.-G. (2005). Inorg. Chem. Соттии. 8, 773-776.
Xiao, H.-P. (2005). Acta Cryst. E61, m942-m944.
Xiao, H.-P., Li, X.-H. \& Hu, M.-L. (2005). Acta Cryst. E61, m506-m508.
Xiao, H.-P., Shi, Q. \& Cheng, Y.-Q. (2005). Acta Cryst. E61, m907-m909.
Xiao, H.-P. \& Zhu, L.-G. (2003). Chin. J. Inorg. Chem. 19, 1179-1184.
Zhang, L.-P. \& Zhu, L.-G. (2005a). Acta Cryst. E61, m1036-m1038.
Zhang, L.-P. \& Zhu, L.-G. (2005b). Acta Cryst. E61, m1439-m1440.
Zhang, L.-P. \& Zhu, L.-G. (2005c). Acta Cryst. E61, m1768-m1770.
Zhu, L.-G., Xiao, H.-P. \& Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 94-96.

